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Abstract 
 Complex systems need to be modeled in a way that 
supports validation, flexible composition of component 
models and component model re-use. A methodology that 
supports these requirements must: support conceptual 
modeling, i.e., mathematical description, and; document the 
semantics embodied in a model. The expression of 
mathematical semantics alone will not suffice. For physics-
based models, the semantics must also identify those 
physical laws that were applied by the modeler. Only in this 
way can one adequately document the particular modeling 
decisions made in the model’s construction. 
 The development of Markup Languages has enabled the 
Semantic Web, with the universal document type being 
expressed in the Extensible Markup Language (XML)[1]. 
Higher level semantic layers may be defined in XML 
applications such as is done with the Mathematical Markup 
Language (MathML). The mathematical semantics 
embodied within Content MathML are currently being 
expanded beyond the expression of “grade school 
mathematics” to enable the expression of higher level 
mathematics by the use of content dictionaries. These 
mathematical content dictionaries contain the definitions of 
semantic XML tags so that the use of well-defined 
mathematical concepts in a document may be 
unambiguously expressed by application of these tags. 
Building on top of this base, scientific markup languages are 
beginning to be developed. 
 In particular, we have identified several requirements 
and some solutions towards the development of a physics 
markup language. For example, it must be embedded within 
a documentation standard that supports an accompanying 
natural language description. The physics markup language 
itself must have the ability to support the expression of 
physical models. This includes the concepts of: physical 
objects, or physical bodies, which have physical observables 
as properties; and physical laws, which when applied to 
physical objects results in model equations, or other 
relations. Physical objects have spatio-temporal extents 
which are usually functions of time. These concepts must be 

translated into XML elements so that the elements may be 
used by modelers to express their models in a 
straightforward way using semantic tagging. In this paper 
we will discuss progress to date, including: the 
identification of Open Mathematical Documents (OMDoc) 
[2] as a candidate documentation system; the definition of 
an abstract data type for the expression of physical 
variables; and the definition of a physics-based model as a 
set of constraint relations defined on a set of physical 
objects. 
 
1. INTRODUCTION 
 Increasingly, computer models are used not only to 
design, develop, or analyze just a single aspect of a new 
product, but to co-design and co-develop multiple aspects 
and to analyze their interactions. Analyzing the complex 
interactions of geometry with physical properties such as 
thermal and mechanical transport, vibration, electrical 
behavior, etc., requires integrated computational support. 
We believe that it is possible, and desirable, to provide a 
documentation framework to support interchange of model 
specifications between computational applications for 
design and analysis of those models. To support this goal 
and others, we are developing a physics markup language. 
 While there are many aspects to system representation, 
we envision a physics markup language to be used to 
represent the physics-based aspects of systems. When large 
physical systems are modeled it may not be appropriate to 
just compose a model of independent, individually modeled 
components. In order to correctly model physical systems, 
we must often have models that are integrated at the 
conceptual, or mathematical level. Only in this way can we 
correctly model the behavior of a whole system with 
strongly interacting parts. We describe here some of the 
mathematical representation issues encountered when doing 
this. 
 A basic choice we have made in this endeavor is to 
make use of the expressiveness offered by the Semantic 
Web technologies, i.e., XML. XML may be thought of as a 
universal data representation language. This is relevant 
because we include in our thinking the idea that model 
specification requires that we remove the commonly 
assumed boundary between the idea that models are distinct 
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from data: we must treat models as a kind of data. To do 
this, we focus particularly on those technologies dealing 
with the representation of mathematical semantics. 
 
2. THE PHYSICAL OBJECT CONCEPT 
 Our starting point is to first discuss how to represent the 
things or nouns of the proposed language. A physical object 
is a unification of the concept of a body in physics (as used 
in Newton’s Definition I and elsewhere [3] , also Einstein’s 
Körper [4, 5] ) with the computer science concept of an 
object (see, for example, [6]), represented as a 
(mathematical) relation of attributes and behaviors. The 
term, physical object, refers to the class of objects that 
represents tangible, concrete entities that are presumed to be 
governed by the laws of physics; those objects with 
attributes that represent the physical observable properties 
of such concrete entities. With the exception of an identity 
attribute, other attributes that do not represent observable 
properties governed by the laws of physics are extraneous to 
our treatment here. 
 The computer science concept of an object enables one 
to couple state, or attribute values, together and also to 
associate those linked attributes with behaviors that depend 
on that state. There are some concepts, such as inheritance, 
embodied in the object concept that may not be necessary to 
representing physical objects but the object concept does 
seem sufficient for representing physical objects, which 
require part-of hierarchy for representing aggregate objects, 
and, as we will see, abstract data types. The concept of a 
physical object narrows the computer science concept to be 
restricted to only those properties necessary for representing 
concrete physical objects that have observable and 
measurable attributes. This should not impede in any way 
the use of the physical object concept within disciplines that 
make use of the broader properties of general objects. 
 The attributes of a physical object are generally those 
properties that can be measured, such as mass, length, time, 
current, temperature, etc., and assigned physical units, such 
as kilogram, meter, second, ampere, Kelvin, etc. These are 
generally regarded as fundamental, being ensconced in 
international standards for many years. We would also 
include state representations such as the quantum wave 
function, even though strictly it is the expectation value of 
its Hermitian operators that are measurable: the wave 
function is generally needed for the representation of those 
observables. 
 One might question whether the concept of a physical 
object is as fundamental as, say, the concept of a measurable 
observable. A physical object is more abstract since it 
cannot itself be directly measured – only its attributes may 
be measured. When we model physical systems we often 
use the idea of macroscopic primitive physical objects, 
which are not aggregate objects: a perfectly conducting 
sphere, a rigid cube, etc. But, we do not believe these are 

fundamental: we don’t necessarily believe that such perfect 
objects exist. They really represent a rather ad hoc way of 
dividing up the perceptible world. The only instances of 
primitive physical objects to represent anything fundamental 
are, perhaps, the various elementary particles. We cannot, 
however, mistake how fundamental the concept of a 
physical object is with how fundamental, or not, are most 
instances of that concept that we use. We must remember 
that the concept of a physical object provides the context, 
and hence, an essential part of the meaning of the 
measurements of the attributes. One thing that the object 
concept provides is the concept of a reference frame. Since 
Einstein, it is generally agreed that the notion of an absolute 
reference frame is physically meaningless. In physical 
reality, reference frames must have a basis defined by 
physical objects. 
 
3. AN ABSTRACT DATA TYPE FOR PHYSICAL 

OBSERVABLES 
 Earlier [7] we posed the question: “Is there a 
mathematical type for physical variables?”, meaning by the 
term physical variable the symbols that we use to represent 
the values of the observable properties of physical objects. 
Many physicists and engineers may be unconcerned with 
this question, acting as specialists in a well defined 
specialty and comfortable with the standard notation of that 
specialty. The problem of having communicating models 
where classical, relativistic, and quantum physics models 
interact, however, requires that we have a mechanism to 
translate the representation of variables between these 
models. Mathematical manipulations could be more efficient 
and clear if they were in a uniform notation. Nevertheless, 
the desirability of a single mathematical, or abstract, data 
type for physical variables does not guarantee its existence, 
nor would its apparent existence guarantee that it would 
always be so. The future could bring new physical 
phenomena that would break the old notation. 
 The answer we arrived at was that, indeed, there 
appears to be a single abstract data type that can account for 
most, if not all, of the mathematical objects generally used 
by physicists and engineers for representing physical 
variables. Briefly stated, that type is formed as the 
commutative mathematical product of a physical unit, such 
as meter or second, and an element of a geometric algebra, 
which belongs to the family of Clifford algebras. The 
elements of Clifford algebras are vector-like objects. More 
interestingly, Clifford algebras possess a vector product that 
is associative and, with respect to which, each non-zero 
element has an inverse. Real and complex valued scalars, 
vectors and tensors may all be represented using geometric 
algebras. Geometric algebras also contain operators of 
physical invariance, such as the Euclidean transformations 
(spatial rotations, translations, and reflections) and Lorentz 
transformations (space-time rotations, boosts, and 
reflections). Even the more esoteric Lie group elements such 



as spinors and quaternions are elements of geometric 
algebras. 
 With this understanding we can now formalize the 
representation of physical objects, which have physical 
quantities as attributes, as a mathematical relation of 
elements of a geometric algebra.  We would also note that 
representing a geometric algebra would appear to require 
polymorphism and inheritance: the elements are sometimes 
scalars, sometimes vectors, and sometimes multi-vectors, 
and; because the elements of a geometric algebra have an 
associative product and an inverse, they inherit group 
properties. So, while we observed that there appears to be 
no inheritance hierarchy for physical objects based on 
physical principles, there appears to be one for their 
attributes. 
 
4. DEFINING MODELS 
 What is a model? This is a question whose answer 
defines the scope of what we may represent. Part of what 
must be considered is how what we call models are created 
and used. Physics-based computational models that are used 
as components in software systems are typically formulated 
as functional blocks: once values are bound to all of the 
inputs, a unique output result may then be computed. This 
functional block form works particularly well for causal 
predictive models where past states serve as inputs and the 
model produces output states that represent the future, 
relative to the inputs. While the functional block form of a 
model may be a frequently used form, it does not 
necessarily capture the full meaning of what may be meant 
by a physics-based model. To understand what a fuller 
meaning of a physics-based model may be, we review the 
creative process that gives rise to models. We will arrive at 
two forms for a model: a specification-form, represented as 
a constraint satisfaction problem, and a solution-form, 
represented as a functional-block form. We note that this 
development is a synthesis of previous work in describing 
semantics of physics-based models [7-9] and some work 
that has informed the development of the Systems Modeling 
Language (SysML) [10-11]. 
 Developing a physics-based model begins with a 
decision to describe the behavior of one or more physical 
objects, their behavior, and their interactions with each 
other. After deciding on the particular behavior and 
interactions of interest, as well as the level of detail desired, 
a representation of the attributes of the physical objects are 
created in terms of spatio-temporal variables, and the 
physical laws governing the behavior of those objects and 
their interactions is applied. The physical laws typically are 
formulated in terms of differential equations involving the 
variables representing the attributes of the physical objects. 
Variables may also be assigned to represent the initial 
conditions for a meaningful representation of a solution to 
the differential equations. Once the problem is so 
formulated, one may say “all of the physics are 

represented”. This means that all of the constraints on the 
behavior of the modeled objects that are imposed by 
physical principles, at least those considered by the modeler 
to be relevant, have been applied. It is quite usual for some 
parameter values to be left unspecified, in particular 
scenario specific conditions, such as spatio-temporal 
boundary conditions, or specific material properties such as 
conductivity, hardness, etc. Once all of the physics have 
been represented parametrically, what remains for a 
complete understanding of the model is to explore the 
solution space of the problem, for example, exploring the 
range of allowed values of any parameters whose values are 
unspecified. There may be undiscovered phenomena hiding 
in the solution space even though the individual model 
equations are well known. 
 
4.1. Constraint Satisfaction Problems 
 The result of making the modeling decisions that results 
in a model is commonly represented by a set of model 
equations. A complete summary of the model may be 
phrased as a constraint satisfaction problem (see, for 
example, [12]). Constraint satisfaction problems, or CSPs, 
are well known in the computer science community, though 
very often being defined over discrete domains while 
physics-based models are usually defined over real or 
complex domains.  
 Formally, a constraint satisfaction problem is defined 
by a triple, {X, D, C}, where X is a tuple of all the variables 
in the problem, D is a tuple of corresponding domains for 
those variables, and C is a set of constraints over the 
variables in X. Each constraint may be represented as a pair, 
{t, R}, where t is an n-tuple of some variables in X and R is 
an n-ary relation, defining a set of tuples of allowed variable 
values. For a CSP defined over finite, discrete domains, the 
relation may take the form of an enumeration of its 
elements. For infinite domains, such as real-valued physical 
variables, the relation must be stated more succinctly, such 
as an equality or inequality. 
 What makes a CSP most interesting, of course, are the 
solutions. An evaluation of the variables is a function 
assigning values to the variables consistent with the variable 
domains. A solution to a CSP is an evaluation of all the 
variables that satisfies all of the constraints. In other words, 
a solution is a way for assigning a value to each variable in 
such a way that all constraints are satisfied by these values. 
A CSP is said to be  satisfiable if solutions exist. 
 A CSP may be represented as an undirected graph, a 
constraint graph, where the nodes are the variables and 
edges represent binary constraints, or constraints between 
pairs of variables. Higher order, or n-ary, constraints may be 
represented with a second type of node having edges 
connected to all of the variable nodes that it affects. The 
application of a typical physical law gives rise to an n-ary 



constraint for each pair of physical objects, coupling n 
physical variables in an equation or inequality. 
 Because the form of the CSP captures the physics-based 
requirements, we also refer to it as the specification-form of 
a model. 
 
4.2. Functional Block Models 
Many if not most of the computational models resulting 
from the mathematical modeling process are more 
specialized than the conceptual model that they are drawn 
from. After transforming models into a discretized version, 
they are commonly implemented in an imperative 
programming language, and are characterized by sequences 
of variable bindings. While side-effects are not unknown, in 
the best of cases these models, when implemented for 
operational use, retain a functional form, i.e., when all of the 
inputs are known or bound, then the outputs may be 
explicitly computed and bound. For this reason, we also 
refer to the functional block model as the solution-form, 
since that is the form that is operationally useful. 
 It is important to note how the functional block 
representation of a model is different from the constraint 
satisfaction problem representation of a model. Take, for 
instance, a model given by: 
 
F = m*a 
 
This is a statement of a constraint relation, of equality in 
particular, between the three variables, F, m, and a, and 
from which we can form a CSP. Taking this particularly 
simple CSP we can easily derive three different functional 
block computational models, one for each of the variables, 
i.e., 
 
“F  :=  m*a”,  “m  :=  F/a”,  and  “a  :=  F/m” 
 
 Here the variables on the right-hand sides of the 
assignment statements are inputs and the variables on the 
left-hand sides of the assignment statements are outputs. 
These statements not only reflect the equality constraints, 
but also explicitly specify the sequence of bindings. Because 
these three variables, F, m, and a, each depend on the other 
two, their three corresponding function-block models have 
mutually incompatible precedence relationships: it does not 
make sense to have any pair of these three functional blocks 
simultaneously operable. To understand this we need to 
recall that each input and each output represents the value of 
a specific observable property of a specific physical object. 
To compose functional block forms in such a way as to have 
the binding of a particular observable precede itself doesn’t 
make sense. 
 From this analysis we see that a significant difference 
in these representations of models is the binding sequence: 
it is an essential part of the function-block representation of 
a model, but not always present in the CSP form. One could 

conceivably add precedence constraints to the constraint list 
and even attach physical interpretation to them, such as 
causality, where initial conditions precede later states. 
Adding precedence constraints to the constraint list does not 
appear to be part of the CSP formalism, nor does it appear 
to be necessary since it does not affect the nature of the 
solutions to the CSP with respect to the resulting functional 
equations. 
 Considering the above example, the function-block 
representation may be viewed as originating from a CSP 
solution with the subsequent addition of binding sequence 
constraints. In this way, one CSP can give rise to multiple 
function-block models where the CSP represents a set of 
functional requirements and the function-block 
representation provides an effective implementation 
satisfying the precedence requirements in a more specific 
context. Another significant difference between the CSP 
representation of models and the function-block 
representation is that the constraints expressed in the CSP 
typically hold physical semantic value as representing 
properties of the solution. The function-block 
representation, by itself, when it is disconnected from a 
corresponding CSP description to which it provides a 
solution, suffers a loss of the information that is embodied 
in the constraints. 
 
5. COMPOSITION OF MODELS 
 The composition of models is important to consider, 
particularly from the objectives of re-use and systems 
design and analysis. If we want to analyze how two objects 
will interact, we will want to meaningfully combine, or 
compose, their respective models. Also, it is quite possible, 
if not likely, that a given model is actually comprised of 
multiple sub-models. Understanding how sub-models may 
be combined to form a given model, or be removed from or 
be substituted into that given model, also comes under the 
subject of model composition. 
 When a model is posited as a functional block, 
composition of models is most naturally given by function 
composition. Composition of models in functional block 
form is very straightforward: bind the outputs of one block 
to the inputs of a second. This type of composition is used 
when the first of the two component models provides state 
values that are used by, but not affected by, the second 
model. 
 When a model is posited as a constraint satisfaction 
problem, then composition of two problems is reasonably 
defined by the union of the variables and the union of the 
sets of constraint relations, i.e., for 
 
{X, D, C} =  
 Composition({X1, D1, C1}, {X2, D2, C2}) 
 
 



Where in the resulting CSP, X is the union of the tuples X1 
and X2: variables that occur in either X1 or X2 will be 
represented once in X and variables that occur in both X1 
and X2 are only represented once in X. Since the variable 
domains, D, D1, and D2, essentially represent unary 
constraints on the variables, if Xi = X1k = X2m then Di is 
given by the union of the constraints, which is just the 
intersection of D1k and D2m. Domains of variables 
occurring in only one of the tuples X1 or X2 are the same in 
D as they are in D1 or D2. Finally, the set of constraints, C, 
is given by the union of C1 and C2. 
 
Figure 1.  Some semantic concept classes for physics 
markup 

 Composition of physical objects is achieved by 
aggregation. A primitive physical object is simply one that 
is not an aggregated object. An aggregate physical object is 
comprised of primitive and aggregate physical objects. 
Aggregating physical objects is largely a modeling choice, 
but should be motivated by the existence of interactions 
between the constituent physical objects. Aggregating 
physical objects must obey the necessary physical 
conservation laws, i.e., of mass, energy, charge, momentum, 
etc. 
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6. FULL PICTURE OF THE MODELING PROCESS 
Considering what we have discussed, we now put together a 
full picture of a regular, formal structure to the process of 
mathematical modeling in physics. This results in semantic 
concept classes, in Figure 1, which will help us define 
semantic XML tags. (The discussion of this section refers to 
Figure 1). 
 First we identify the physical objects and 
representations of their measurable properties. The class of 
physical objects may be described as a mathematical 
relation of these properties. The modeler may create 
aggregate objects or primitive (non-aggregate) objects. 
 The modeler then chooses how to apply different 
physical laws to the objects. The allowed operations are 
defined by the algebra of the variables representing the 
physical observables: in general these are elements of a 
specified geometric algebra. 
 The application of physical laws results in equations 
and inequalities which constitute a set of constraints phrased 
as a Constraint Satisfaction Problem, or CSP. The CSP form 
is a well established form for encapsulating a problem 
definition. The constraints may be annotated with the names 
of physical laws used to define them. 
 Even with soundly defined problems, i.e., satisfiable 
CSPs, there is no guarantee of a path to a solution. 
Sometimes solutions may be found by the modeler, with or 
without the aid of computer algebra solvers, or in the 
literature. The documentation form of the finding of a 
solution is that of a derivation, constructive proof, or 
algorithm. 
 The final solution-form is a function-block. Note that 
the equality relation, F=ma , can result in three distinct 
function-block forms: F:=ma ;  m:=F/a ; a:=F/m. The 
difference between these is that assignments impose 
evaluation precedence, i.e., inputs must be known before 
outputs may be computed. Computer models are frequently 
provided as a single function-block form. 
 Meaningful composition is feasible for both the 
function-block version of a model and the CSP version. 
Function-block composition may only result in an acyclic 
graph. Composing such “strongly-interacting” sub-models, 
where attempting to do so at the function-block level it 
would appear that a variable is both an input and an output, 
may only be done properly at a higher level, by composing 
CSP forms or by additional modeling constraints provided 
by the modeler. 
 
7. OMDOC AND PHYSML 
Developing a physics markup language is an attempt to 
document certain types of abstract knowledge. As such, we 
must consider not only the particular elements of physics-
like knowledge but we must also consider the framework in 
which such knowledge is embedded. We must, for example, 

have the concept of a document. The concept of a document 
is essential for encapsulating particulars regarding the 
intellectual product contained within. For example, 
identifying the subject matter, the author, the date produced, 
etc., are important. An important feature of much of the 
effective knowledge in physics is its mathematical nature, 
therefore having a means of expressing the mathematical 
semantics of the knowledge is very important. After 
surveying the literature we identified OMDoc as having 
many desirable attributes to further our objectives. OMDoc 
is open and extensible. OMDoc uses OpenMath and 
Content-MathML for expressing mathematical formulae and 
also provides other modules, which support, for example, 
axiom, theorem and proof structures. These shall prove 
useful for documentation of the formal aspects of physics 
knowledge. 
 From the OMDoc documentation[2], OMDoc is a 
markup format and data model for Open Mathematical 
Documents. It serves as semantics-oriented representation 
format and ontology language for mathematical knowledge. 
OMDoc concentrates on representing the meaning of 
mathematical formulae instead of their appearance. OMDoc 
is an extension of the OpenMath and (content) MathML 
standards. It extends these formats by markup for the 
document and theory level of mathematical documents, so 
that the document author can specify them and the consumer 
(an OMDoc reader or a mathematical software system) can 
take advantage of them. The value of having a document 
marked in this way should provide at least two benefits: a 
means of providing unambiguous documentation, valuable 
for validation, and; a form that is readily interpreted by 
computer for testing by model execution. 
 OMDoc is an XML application, organized into 
modules. While it includes support for expressing 
mathematical objects, abstract data types, and proofs, 
necessary to supporting the bulk of the above discussed 
concepts, It also supports documentation tagging, such as 
provided by Dublin Core[13] and Creative Commons[14] 
metadata, necessary for supporting documentation of textual 
intellectual products. 
 Recently, a new collaborative project, PhysML[15], 
was initiated as part of the OMDoc project to create a 
markup language for documenting physics knowledge, not 
restricted to purely formal knowledge. The representation of 
physics-based models is only a subset of the more formal 
aspects of physics knowledge. Since this and prior work 
share some of the same goals and can benefit from joint 
work, we expect in the future to participate in that 
collaboration. In particular, we are embarking on the 
creation of content dictionaries to capture the physical 
semantics, including the concepts expressed in this paper. 
 



8. CONCLUSIONS 
 We have attempted to identify as abstractly as possible 
the form that the physics-based modeling process takes. Our 
purpose in doing this is to identify the concepts, particularly 
the mathematical concepts, that may be represented using 
existing and emerging mathematical content representation 
formats. The purpose for doing this is to provide a 
mechanism for unambiguous documentation of the physics-
based models that lie at the core of the modeling and 
simulation of many systems. While the focus of this work is 
on the representation of physical semantics, we have tried, 
principally by relating it back to the object model and 
synthesizing with other systems specification work[], to 
phrase it in such a way as to be a semantic layer that is 
compatible with other types of information necessary for 
documenting the design and analysis of systems. 
 
References 
 
[1] World Wide Web Consortium (W3C), “Extensible 
Markup Language (XML)” http://www.w3.org/XML/ 
 
[2] M. Kohlhase, “OMDoc: An Open Markup Format for 
Mathematical Documents (Version 1.2)”, number 4180 in 
Lecture Notes in Artificial Intelligence (LNAI), Springer 
Verlag, 2006 
  
[3] F. Cajori, “Sir Isaac Newton’s Mathematical Principles 
of Natural Philosophy And His System Of The World” 
University of California Press (1947). 
 
[4] A. Einstein, “The Meaning of Relativity”, Princeton 
University Press, expanded edition (2005). 
 
[5] A. Einstein, “Zur Elektrodynamik bewegter Körper”, 
(“On the Electrodynamics of Moving Bodies”), Annalen der 
Physik vol XVII, 1905 p. 891-921, 
 
[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and 
W. Lorensen, “Object-Oriented Modeling and Design”, 
Prentice Hall, (1991). 
 
[7] J. B. Collins, “A Mathematical type for Physical 
Variables”, submitted, Mathematical Knowledge 
Management 2008, for publication in the Lecture Notes in 
Artificial Intelligence (LNAI) series, Springer-Verlag. 
 
[8] J. B. Collins,  and D. Clark, “Towards an Ontology of 
Physics”, Proceedings of the European Simulation 
Interoperability Workshop, July 2004, 04E-SIW-044. 
 
[9] J. B. Collins, “Standardizing an Ontology of Physics for 
Modeling and Simulation”, Proceedings of the Fall 

Simulation Interoperability Workshop, September 2004 
04F-SIW-096. 
 
[10] M.W. Wilson, R.S. Peak, R.E. Fulton, “Enhancing 
Engineering Design and Analysis Interoperability - Part 1: 
Constrained Objects”, First MIT Conference Computational 
Fluid and Structural Mechanics (CFSM), Boston (June, 
2001). 
 
[11] R.S. Peak, and M.W. Wilson, “Enhancing Engineering 
Design and Analysis Interoperability - Part 2: A High 
Diversity Example”, First MIT Conference Computational 
Fluid and Structural Mechanics (CFSM), Boston (June, 
2001). 
 
[12] E. Tsang, “Foundations of Constraint Satisfaction”, 
Academic Press (1995) 
 
[13] http://dublincore.org/ 
[ 
[14] http://creativecommons.org/ 
 
[15] E. R. Hilf, M. Kohlhase and H. Stamerjohanns, 
“Capturing the Content of Physics: Systems, Observables, 
and Experiments” MKM 2006, Lecture Notes in Computer 
Science, Vol 4108 pp165-178, Springer (2006) 
 
 
Biography 
 Joseph Collins has been a Research Physicist at the 
Naval Research Laboratory for eighteen years, working 
largely on modeling and simulation of physical systems. 


